Pest solutions
Adjuvant Study
General introduction on Xanthan Gum

XANTHAN GUM, was developed as one of the most widely used industrial polysaccharides, received GRAS listing (Generally Regarded As Safe) for food use in the US after its initial discovery in the USDA laboratories in Peoria and its development by KELCO. Subsequently, the polysaccharide received approval in UE.

This polymer exhibits three desirable properties:

(1) High viscosity at low concentrations
(2) Pseudoplasticity
(3) Insensitivity to a wide range of temperature, pH and electrolyte variations.

Because of its special rheological properties, xanthan gum is used in food, cosmetics,
pharmaceuticals, paper, paint, textiles, adhesives and oil and gas industry. The flow characteristics of xanthan gum, coupled with its stability to salts and extremes of pH, gives it a technical advantage over most polymers used in drilling. The greatest potential for xanthan gum appears to lie in the enhanced oil recovery operations. Discovery and industrial acceptance of xanthan gave boost to further research and development in the field of microbial polysaccharides.


In the petroleum industry, xanthan gum is used in oil drilling, fracturing, pipeline cleaning, and work-over and completion. Due to xanthan gum is excellent compatibility with salt, and resistance to thermal degradation, it also useful as an additive in drilling fluids. The pseudoplasticity of its solutions would provide low viscosity at the drill bit where the shear rate is high and high viscosity in the annulus where shear is low. Therefore, xanthan would serve a dual purpose by allowing faster penetration at the bit and suspending cuttings in the annulus. For every barrel of oil produced, approximately two remain in the ground. Therefore, enhanced oil recovery (EOR) will be an important use of xanthan gum in the next decades. The basic principle applied is to improve the separation of water and oil thereby would increase oil recovery. However, the quality of xanthan gum is a critical consideration as high impurities would increase the difficulty when refining the oil. Xanthan gum is used in micellar-polymer flooding as a tertiary oil recovery operation. In this application, polymer-thickened brine is used to drive the slug of the surfactant through porous reservoir rock to mobilise residual oil; the polymer prevents bypassing of the drive water through the surfactant band and ensures good area sweeping . In both applications, the function of polymers is to reduce the mobility of injected water by increasing its viscosity.

xanthan gum has been used to improve the flow-ability in fungicides, herbicides, and insecticides formulations by uniformly suspending the solid component . The unique rheological properties of xanthan gum solution also reduce drift, and increase pesticide cling and permanence.

Application in SC formulations are already welcomed...

Recently, various "tolerance exemptions" were issued by U.S. Environmental Protection Agency for use of xanthan gum as the surfactant in pesticide formulations.

xanthan gum's shear thinning characteristics can be utilised in the paint industry. Paints containing xanthan gum are highly viscous at low shear rates, and thus will not drip from a brush. However, the shear stress produced by brushing, thins the paint and allows for easy application. Because of its ability to disperse and hydrate rapidly, is non-polluting and gives a good colour yield, xanthan is also used in jet injection printing. Recently, in the formulation of new generations of thermo-set coatings, xanthan gum has been introduced to meet the challenges of producing environmental friendly products.
The other specialty applications employed the xanthan gum gel is in removing rust, welding rods, wet slag, and cleaning other debris from gas pipelines.

It is used as suspending and thickening agent for fruit pulp and chocolates. United States Food and Drug Administration have approved xanthan on the basis of toxicology tests for use in human food. Many of today's foods require the unique texturization, viscosity, flavour release, appearance and water-control properties. Xanthan gum improves all these properties and additionally controls the rheology of the final food product. It exhibits pseudoplastic properties in solutions, and has less 'gummy' mouthfeel than gums with more Newtonian characteristics.

Prev: Benefits of managing pesticide drift Next: Silicone Antifoam Emulsion for pesticides

Home  |  Pesticide  | Adjuvant  | Sitemap  | News Center  |  Contact Us
Address: No.2,Lane 1123,Kangqiao Road, Pudong New Area, Shanghai 201315 ,China   Tel : 0086 21 38122007   Fax : 0086 21 38122006    Email:
Keywords:Organic Silicone Agricultural Additive, Polyether Modified Trisiloxane, Organic Silicone Surface Agent, Wetter, Spray Regulator, Pests, Rice, Rice Weevil,
Aggregate Sheath Spot Of Rice, Piricularia Leaf Spot Of Rice, Brown Spot, Bipolaris Oryzae, Panicle Mite, Cockspur Grass, Cyperus Difformis, Forb Steppe,
Banded Sclerotial Blight, Tea, Tea Mosquito Bug, Helopeltis Antonii, Empoasca Flavescens, Tea Green Leafhopper, Tea Tortrix-Caterpillar,
Homona Coffearia, Tea Flush Worm, Cydia Leucostoma, Scarlet Tea Mite, Brevipalpus Phoenicis, Soybean, Phytophthora, Rhizoctonia,
Soybean Aphids, Fusarium Wilt, Wheat, Wheat Aphids, Armyworms On Wheat, Greenbugs, Cereal Leaf Beetle,
Wheat Stripe And Stem Rust, Corn, Root-Knot Nematode, Gray Leaf Spot, Northern Corn Leaf Blight,
Sweet Corn Rust, Aspergillus Flavus, Aspergillus Ear Rot